Na+-induced Ca2+ influx through reverse mode of Na+-Ca2+ exchanger in mouse ventricular cardiomyocyte
نویسندگان
چکیده
BACKGROUND Dobutamine is commonly used for clinical management of heart failure and its pharmacological effects have long been investigated as inotropics via β-receptor activation. However, there is no electrophysiological evidence if dobutamine contributes inotropic action due at least partially to the reverse mode of Na+-Ca2+ exchanger (NCX) activation. METHODS Action potential (AP), voltage-gated Na+ (INa), Ca2+ (ICa), and K+ (Ito and IK1) currents were observed using whole-cell patch technique before and after dobutamine in ventricular cardiomyocytes isolated from adult mouse hearts. Another sets of observation were also performed with Kb-r7943 or in the solution without [Ca2+]o. RESULTS Dobutamine (0.1-1.0 μM) significantly enhanced the AP depolarization with prolongation of AP duration (APD) in a concentration-dependent fashion. The density of INa was also increased concentration-dependently without alternation of voltage-dependent steady-status of activation and inactivation, reactivation as well. Whereas, the activities for ICa, Ito, and IK1 were not changed by dobutamine. Intriguingly, the dobutamine-mediated changes in AP repolarization were abolished by 3 μM Kb-r7943 pretreatment or by simply removing [Ca2+]o without affecting accelerated depolarization. Additionally, the ratio of APD50/APD90 was not significantly altered in the presence of dobutamine, implying that effective refractory period was remain unchanged. CONCLUSIONS This novel finding provides evidence that dobutamine upregulates of voltage-gated Na+ channel function and Na+ influx-induced activation of the reverse mode of NCX, suggesting that dobutamine may not only accelerate ventricular contraction via fast depolarization but also cause Ca2+ influx, which contributes its positive inotropic effect synergistically with β-receptor activation without increasing the arrhythmogenetic risk.
منابع مشابه
Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury.
OBJECTIVE We have recently shown that spontaneous Ca2+ oscillations elicit irreversible hypercontracture of cardiomyocytes during reoxygenation. The aim of this study was to investigate whether influx of exterior Ca2+ through the reverse mode of the Na+/Ca2+ exchanger (NCE) contributes to the development of these oscillations and, therefore, to reoxygenation-induced hypercontracture. METHODS ...
متن کاملThe sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes.
Our objective was to determine the respective roles of the sarcoplasmic reticulum (SR) and the Na+/Ca2+ exchanger in the small, slowly decaying Ca2+ transients of failing human ventricular myocytes. Left ventricular myocytes were isolated from explanted hearts of patients with severe heart failure (n=18). Cytosolic Ca2+, contraction, and action potentials were measured by using indo-1, edge det...
متن کاملEffects of overexpression of the Na+-Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes.
We measured [Ca2+]i and [Na+]i in isolated transgenic (TG) mouse myocytes overexpressing the Na+-Ca2+ exchanger and in wild-type (WT) myocytes. In TG myocytes, the peak systolic level and amplitude of electrically stimulated (ES) [Ca2+]i transients (0.25 Hz) were not significantly different from those in WT myocytes, but the time to peak [Ca2+]i was significantly prolonged. The decline of ES [C...
متن کاملInhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and antiarrhythmic consequences.
The Na+/Ca2+ exchanger plays a prominent role in regulating intracellular Ca2+ levels in cardiac myocytes and can serve as both a Ca2+ influx and efflux pathway. A novel inhibitor, KB-R7943, has been reported to selectively inhibit the reverse mode (i.e., Ca2+ entry) of Na+/Ca2+ exchange transport, although many aspects of its inhibitory properties remain controversial. We evaluated the inhibit...
متن کاملReverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation
BACKGROUND Agonist stimulation of airway smooth muscle (ASM) results in IP3 mediated Ca2+ release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na+ influx. This localised increase in Na+ levels can potentially switch the Na+/Ca2+ exchanger into reverse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015